конечный ранг

конечный ранг
finite rank мат.

Русско-английский научно-технический словарь Масловского. 2015.

Игры ⚽ Нужно решить контрольную?

Look at other dictionaries:

  • РАНГ ГРУППЫ — (общий и специальный) понятие теории групп. Группа G имеет конечный общий р а н г r, если r наименьшее число с тем свойством, что всякая конечно порожденная подгруппа группы Gсодержится в подгруппе, обладающей r образующими . Группа G имеет… …   Математическая энциклопедия

  • ГРУППА СУСЛОВИЕМ КОНЕЧНОСТИ — группа, элементы или подгруппы к рой удовлетворяют тому или иному условию конечности. Под условием конечности в теории групп понимается любое такое свойство, присущее всем конечным группам, что существуют бесконечные группы, к рые им не обладают …   Математическая энциклопедия

  • ПОНТРЯГИНА ДВОЙСТВЕННОСТЬ — 1) П. д. двойственность между абелевыми топологич. группами и их характеров группами. Теорема двойственности утверждает, что если G локально компактная абелева группа и X(G) ее группа характеров, то естественный гомоморфизм , переводящий в… …   Математическая энциклопедия

  • ЛОКАЛЬНО СВОБОДНАЯ ГРУППА — группа, каждая конечно порожденная подгруппа к рой свободна (см. Свободная группа). Таким образом, счетная Л. с. г. является объединением возрастающей цепи свободных подгрупп. Говорят, что Л. с. г. имеет конечный ранг п, если всякое ее конечное… …   Математическая энциклопедия

  • Число Бетти — Числа Бетти последовательность инвариантов топологического пространства. Каждому пространству соответствует некая последовательность чисел Бетти . Нулевое число Бетти совпадает с числом связных компонент; Первое число Бетти интуитивно… …   Википедия

  • ПОНТРЯГИНА ПРОСТРАНСТВО — гильбертово пространство с индефинитной метрикой , имеющей конечный ранг индефинитности . Основные факты геометрии П. п. установлены Л. С. Понтрягиным [1]. Помимо фактов, общих для пространств с индефинитной метрикой, имеют место следующие. Если… …   Математическая энциклопедия

  • ЛОКАЛЬНО КОНЕЧНАЯ ГРУППА — группа, в к рой каждая конечно порожденная подгруппа конечна. Любая Л. к. г. периодич. группа, но не наоборот (см. Бёрнсайда проблема). Расширение Л. к. г. с помощью Л. к. г. будет снова Л. к. г. Всякая Л. к. г. с условием минимальности для… …   Математическая энциклопедия

  • СВОБОДНАЯ ГРУППА — группа F с системой Xпорождающих элементов такая, что любое отображение множества Xв любую группу G продолжается до гомоморфизма Fв G. Такая система Xназ. с и с т е м о й с в о б о д н ы х п о р о ж д а ю щ и х; ее мощность наз. р а н г о м с в о …   Математическая энциклопедия

  • СПЕКТРАЛЬНЫЙ АНАЛИЗ — исследование спектральных характеристик линейных операторов: геометрии спектра и его основных частей, спектральной кратности, асимптотики собственных значений и т. д. Для операторов, действующих в конечномерных пространствах, задача определения… …   Математическая энциклопедия

  • Алгебра Хопфа — Алгебра Хопфа  алгебра, являющаяся унитарной ассоциативной коалгеброй и, таким образом, биалгеброй c антигомоморфизмом специального вида. Названа в честь Х. Хопфа. Алгебры Хопфа встречаются в алгебраической топологии, где они возникли в… …   Википедия

  • ДИСКРЕТНАЯ ПОДГРУППА — подгруппа Г топологич. группы G(в частности, подгруппа группы Ли), являющаяся дискретным подмножеством топологич. пространства G. В локально компактных топологич. группах (в частности, в группах Ли) выделяют решетки Д. п., для к рых… …   Математическая энциклопедия

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”